

Summary

Group of companies

Represented worldwide

Headquarter in Dormagen

Vision – from lab 2 fab

Coatema equipment platform strategy for lab 2 fab

Our work in associations – global networking

PrintoCent

Board Member: OE-A

Advisory Board: Fraunhofer ITA

Summary

Our markets

Renewables

Markets:

✓ Batteries

✓ Fuel cells

🗸 Solar

he

Printed electronics

Markets:

✓ Conductive coatings ✓ Smart systems ✓ Displays ✓ RFID ✓ OLED ✓ OPV ✓ Electronics

Membranes

Markets:

✓ Reverse osmosis ✓ Water purification ✓ Medical filtration ✓ Gas filtration ✓ Nanofiltration

Prepregs

Markets:

✓ Automotives

✓ Aerospaces

Markets:

17.08.20

✓ Silicone gels

one gels

✓ Hydrogels

Plaster

Pharmaceutics

Markets:

✓ ODF (Oral Dispersible Film)

✓ Transdermal systems

Textiles

Markets:

✓ Technical textiles ✓ Construction textiles ✓ Medical textiles ✓ Geotextiles ✓ Home textiles

Summary

Lab units

Test Solution S2S

Easycoater

Test Solution R2R

Pilot lines

Pilot

Click&Coat™

Smartcoater

Basecoater 3rd Generation

Pilot lines

Pilot

Deskcoater

Linecoater

Verticoater

Production lines

Production

Production lines

Prepreg plants

Bespoke equipment

Custom made

Printed oleds

Batteries

Composite fibres

Scaling up new technologies

Tools for lab2fab

Summary

R&D services

R&D power house

KROENERT – Drytec – Coatema

- ✓ R&D space: 2,000 m²
- ✓ R&D units: 15
- ✓ From R2R to S2S
- ✓ Working width: 100 mm to 1,300 mm
- ✓ Operation speed: 0.1 to 1,610 m/min
- ✓ 15 parallel public funded R&D projects
- ✓ R&D staff: 25

Product portfolio:

- Basic research, process- and product development
- Product improvement
- ✓ Trainings and conferences

R&D centre KROENERT & DRYTEC

R&D centre Coatema

Use of the Coatema research & development centre

Technologies

Coating, printing, laminating, imprinting, pretreatment, drying, curing, cross linking, cutting

Number of units available 10 – 12 units on 1 200 sqm

Sheet-to-Sheet – S2S up to 300 mm x 500 mm

Roll-to-Roll – R2R up to 500 mm width

Operation speed 0.1 to 100 m/min

Product portfolio		
 Process development ✓ Feasibility study ✓ Ink – process study ✓ Process analysis ✓ Proof of concept ✓ Smale scale prototype 	 Test production ✓ Prototyping ✓ Near to market testing ✓ TRL evaluation ✓ Training of staff 	 Education ✓ Coatema conference ✓ Training of customers ✓ Education of students
After sales service and ramp up of processes ✓ of Coatema units	Development of custom made design for equipment ✓ Prototyping ✓ Proof of concept	 Funded research projects ✓ German funded ✓ Horizon 2020 ✓ Global 2+2 projects ✓ B2B projects

17.08.20

R&D customers ARISTOTLE **TECHNISCHE** UNSW THE UNIVERSITY Agency for Queen Marv UNIVERSITÄT UNIVERSITY Science, Technology OF ARIZONA. DRESDEN University of Londor OF THESSALONIKI and Research Karlsruhe Institute of Technology RUHR TECHNICAL UNIVERSITY OF LIBEREC Institut für Textiltechnik und UNIVERSITÄT Lehrstuhl für www.tul.cz Taiwan Textile BOCHUM Textilmaschinenbau Reasarch Institute hochschule **Fachhochschule Kiel** Deutsches Textilforschungszentrum Nord-West 62 CEM Forschungsinstitut German Textile Research Centre North-West hof Hochschule für Anaewandte Wissenschaften und Kunststoffbahnen University of Applied Sciences Centre for Nanotechnology and Smart Materials HERIOT UNIVERSITY OF **JOANNEUM** GeorgiaInstitute WATT Neue Materialien RESEARCH CAMBRIDGE Hochschule Niederrhein Tech Fürth University of Applied Sciences ÜLICH innovation for life MIONAL UNIVERSI Centre Tecnològic de Catalunya of MONGOLIA FORSCHUNGSZENTRUM DEUTSCHE INSTITUTE FÜR TEXTIL + FASERFORSCHUNG Hochschule Reutlingen Fraunhofer Fraunhofer KITECH Holst Centre Reutlingen University open innovation by imec & TNO -LBF IMM Fraunhofer Fraunhofer Fraunhofer 🗾 Fraunhofer 📓 Fraunhofer Fraunhofer IAP IAF ILT IFAM ISC FEP Fraunhofer **Fraunhofer** 💹 Fraunhofer Fraunhofer Fraunhofer 💹 Fraunhofer IVV PYCO IWM ISE IPT ICT

R&D projects overview 2020

E-Nanoprint Pro

Summary

The future market

The future market

2010 2 Billion US\$ predominantly by OLED displays 2012 8 Billion US\$ predominantly by OLED displays **Potential** for a 50 Billion US\$ market within the next 10 years driven by OPV, lighting, displays, logic, memory/RFID,

sensors

The future market

Digital fabrication

Digital fabrication is happening – lot size 1 is real

Why now?

Digital fabrication and additive manufacturing will disruptively change the world of manufacturing we know today!

Disruptive!

The "4th" industrial revolution

- ✓ Digital fabrication means to have the ability to produce lot size one for the same cost as for lot size million
- Manufacturing at the site with personalized design for each customer
- It will change global manufacturing to local manufacturing
- Productivity boost for the old economies and Europe, the real 4th revolution
- The "Manufaktur" will come back as the "digitale Manufaktur 2.0"

Summary

From 2008 till today – PE as the flexible bridge

Printed electronics – bridging the gap

What could be the pathway on to textiles or also integrated into textiles?

From 2008 till today – PE as the flexible bridge

Sensor systems – roadmap 2015

Case study – design principles

Authors: Juha-Veikko Voutilainen, Tuomas Happonen, University of Oulu

Figure 1. Printed temperature sensor and layout

(a) (b) (c) Figure 1. Printed capacitive humidity sensor structures

Figure 2. A remote readable RH sensor.

Figure 1. Capacitive touch sensor

Figure 1. Electrochemical biosensor

Authors: Elina Jansson, Jukka Hast, VTT

Figure 1. Printed gas sensors

Tools for lab 2 fab

Summary

Coating parameters				
Coating chemistry	Coating processes	Process control	Drying	
 Rheology Viscosity Viscoelasticity Type of solvents Amount of solids Van der Waals force Sheer ratio Adhesion/Cohesion 	 Coating systems Single or multilayer coatings Direct coatings Transfer (indirect) coatings Substrate speed Layer thickness Coating accuracy 	 Process layout Tension control system Material guiding system Inline parameter control Quality control 	 Convection drying Contact drying Infrared drying Sintering NIR High frequency UV crosslinking systems 	
Substrate	Pretreatment	Environment	Finishing	
 Surface tension Dimension stability Surface structure Contact angle 	 Corona Plasma Cleaning 	 Humidity Temperature Inert conditions 	 Calendaring Embossing Slitting 	

Processes

Upscaling from lab 2 fab – going to fab-technologies

From lab 2 fab

PrintoCent

Process parameters

Process parameters are:

- ✓ Operation speed
- ✓ Rheology of coating and printing inks
- ✓ Substrate condition
- ✓ Tension control MD / CD
- ✓ Edge control
- Resolution and registration accuracy of printing / laminating systems
- Precision of coating operations
- Curing / drying / crosslinking

Tension control	Edge guide control	Quality control	
 ✓ Load cell ✓ Dancer ✓ Pulling devices ✓ Design of drives 	 Different sensors Mechanical stress 	 Particle contamination analysis Defect detection Thickness control Function control of the device or layer 	
Registration control	<u>Process analysis</u>		
 ✓ Camera ✓ Fiber optic ✓ Design of drives 	 Statistic parameters Product flow analysis Yield Cost of ownership 		

This project is funded by the European Union

Development of smart machines, tools and processes for the precision synthesis of nanomaterials with tailored properties for Organic Electronics

The project SMARTONICS receives funding form the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 310229.

Winding / cleaning

Unwinding cabinet

- ✓ Can receive rolls with core of 3 inch
- ✓ Max diameter of 500 mm
- ✓ Max weight 50 kg
- ✓ Web width of 300 mm
- \checkmark Automated forward and reverse movement of the web
- ✓ Speed of 1 20 m/min.
- \checkmark Tension control of the web within the range of 5 250 N

Web cleaning system

✓ Contact cleaning rollers for particles of >1µm diameter

1st Printing

 Web surface activation with Plasma Treatment

Dryer 1

- ✓ 3 meter dryers
- ✓ Hot air and heated nitrogen
- ✓ Temperatures up to 230°C

Slot die coating

Slot die coating station compatible for materials used in OEs

- Print solutions with viscosity range of 10 – 1000 mPas
- The above range can lead to layer thickness range of 10 – 1000 nm
- ✓ Lateral accuracy of ±1%

Laser patterning

Coatema

Laser scribing/patterning

- Picosecond laser for patterning OE materials
- ✓ 3 meters cabinets
- Tension and driving web control
- ✓ System ±100 µm of accuracy

Module for the registration camera

Technical specifications:

- ✓ Measurement accuracy = +/-20 µm
- ✓ ATEX proof
- ✓ 300 mm roller width
- ✓ Web speed:
 - 1 20 m/min; optimum speed is 3 – 20 m/min.
- ✓ PLC-driven correction adjustment system
- ✓ Module to be operated under N₂

Rotary screen printing

2nd printing station

- ✓ Rotary screen printing
- ✓ Coating width of 300mm
- ✓ Lateral accuracy ±5%

Dryer 2

- ✓ 3 meters dryers
- ✓ Hot air and heated nitrogen
- ✓ Temperatures up to 230°C

Inkjet station

Inkjet station System

Coatema software

Already integrated: Fujifilm Dimatix

Encapsulation

Rewinding station

- The rewinding station has a retaining roller
- \checkmark Identical specs to the unwinding station
 - ✓ 3 inch core rolls
 - Automated forward and reverse movement of the web
 - ✓ Speed of 1 20 m/min.
 - Tension control and edge guide system

Lamination / delamination station
✓ Compatible with 300 mm web width
✓ Web control with edge guide system
✓ Lateral accuracy of ±100 µm / 20 µm

Inline quality control – Ellipsiometry and inline Raman by Horiba

Summary

- ✓ 19 m in length
- ✓ 300 mm working width
- ✓ 30 m/min. per minutes production speed
- ✓ 3 print stations

✓ Plasma treatment

- ✓ 6.000 mm nitrogen dryers in 500 mm sections
- ✓ Registration control
- Laminating station

New design principle

Technologies & processes

Slot die system

Basics of slot die coating – characteristics of slot dies

- \checkmark Homogeneous, thin layers
- ✓ Dosing (metering) system
- Touchfree (except in impregnation mode)
- Closed system (no evaporation of solvents)
- ✓ Full area non stop coating or intermittent

The slot die is the only system, that combines all these features.

Basics of slot die coating – range of parameters

- ✓ Printing speed 0.1 - >1000 m/min
- ✓ Ink viscosity 1 – 30 000 mPas
- ✓ Layer thickness 0,1 - >200 µm
- ✓ Coating accuracy <1% (2 - 5%)</p>
- ✓ Coating width up to approx. 3 m

Basics of slot die coating – Coatema standard layout

Basics of slot die coating – slot die examples

100 mm, 11 o'clock

300 mm, 9 oʻclock

500 mm, slightly tilted

300 mm, double sided

Structured coating – levels of complexity

	Web direction	Current status			
1		Full area, homogeneous	Requirements are met, thickness profile variation of 0.5 %		
2		Stripes downweb	Requirements are met, good edge definition		
3		Stripes crossweb (intermittent coating)	Requirements are partially met, edge definition of 0.5 – 1 mm depending on liquid		
4	abc	Arbitrary patterns	Requirements are not met, concepts for realization exist, research project is going on		

Structured coating – downweb stripes

Downweb stripes of different width ...

... are made by appropriate shims, lasercut from steel or kapton

Structured coating – crossweb stripes (intermittent)

Structured coating – well defined edges at high viscosity

Two different stripe patterns, one on top of the other

Standard techniques for intermittent coating

Pump: stop – reverse – restart

Slot die body:

move back - move forth to minimum gap move back to working gap (wedge procedure)

Slot die internal:

stop and redirect the flow by shutters and valves. Pump flow continues, die flow stops.

All 3 techniques (single or in combination) work quite well, if the viscosity is rather high and the required edge definition is not more precise than around 1 mm. All techniques may be combined with a vacuum pump upstream to stabilize the meniscus and suck away residual liquid.

Structured coating – reason for bad edges at low viscosity

The mensicus volume between the slot die and the substrate has to be interrupted. Low viscous liquids do not break along a straight line. So the meniscus has to be sucked back and restored as fast as possible to achieve a clear defined edge.

If the viscosity is too low, all of the three before mentioned methods are too slow and too indirect to do this.

Structured coating – new concepts for low viscosity liquids

Two new concepts allow to interrupt and restore the meniscus much faster:

- ✓ Double chamber slot die with modified chamber geometry and Piezo driven suck back pump
- Switching lip slot die with a Piezo driven lip opening mechanism that sucks back the meniscus right where it is

Structured coating – the switching slot die lip

Slot die with movable lips: coating mode

coating works as usual

Structured coating – the switching slot die lip

Slot die with movable lips: stop mode

- L lip
- V slot volume
- B bendable lip
- S bending slot

Bendable lip B flips open Volume V increases and sucks away the meniscus

Structured coating – technical implementation with Piezo-Drive

5 00 V

H2.00ms A Ch1 3

4.10 V

Structured coating – technical implementation with bendable lips

Structured coating – switching slot die: first results

Structured coating – stages of lip motion

Structured coating – ongoing trials: stripe coating of fuel cell paste

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

 $^{\odot}$ 2020 COATEMA Coating Machinery GmbH | www.coatema.de

Printing parameters

Printing parameters

Printing speed (m/s)	Nip pressure (MPa)	Ink viscosity (Pas)	Layer thickness (µm)	Feature size (µm)	Registration (µm)
3 - 10	0.1 - 0,5	0.01 - 0.5	0.04 – 8	40 - 80	20 – 200
10 - 16	1.5 – 5	0.01 - 0.2	0.1 - 12	20 – 75	>10
8 - 15	0.8 – 2	1 - 100	0.5 – 3	25 – 50	>10
2	-	0.1 - 50	3 - 100	75 - 100	>25
1 – 5	-	0.001 - 0.03	0.01 – 0.5 20 (UV)	10 - 50	<10
5	Printing peed (m/s) 3 - 10 10 - 16 8 - 15 2 1 - 5	Printing peed (m/s)Nip pressure (MPa) $3 - 10$ $0.1 - 0,5$ $10 - 16$ $1.5 - 5$ $8 - 15$ $0.8 - 2$ 2 $ 1 - 5$ $-$	Printing peed (m/s)Nip pressure (MPa)Ink viscosity (Pas) $3 - 10$ $0.1 - 0.5$ $0.01 - 0.5$ $10 - 16$ $1.5 - 5$ $0.01 - 0.2$ $8 - 15$ $0.8 - 2$ $1 - 100$ 2 $ 0.1 - 50$ $1 - 5$ $ 0.001 - 0.03$	Printing peed (m/s)Nip pressure (MPa)Ink viscosity (Pas)Layer thickness (μ m)3 - 100.1 - 0,50.01 - 0.50.04 - 810 - 161.5 - 50.01 - 0.20.1 - 128 - 150.8 - 21 - 1000.5 - 32-0.1 - 503 - 1001 - 5-0.001 - 0.030.01 - 0.520(UV)-0.001 - 0.03	Printing peed (m/s)Nip pressure (MPa)Ink viscosity (Pas)Layer thickness

Printing systems

Gravure printing

Flexo printing

Screen printing

Inkjet printing

Inkjet printing

Integration of the "inking" system – current status

- Printing head and mounting (Fujifilm Dimatix Samba)
- ✓ Fluid recirculation system
- ✓ Power supply
- ✓ Computer

Integration of analysis and sintering units – current status

- ✓ Dantex dynamics "dropwatching"
- ✓ Velocity

✓ Size

- ✓ Sphericity
- Drying / Sintering
- ✓ Adphos NIR
- ✓ IR lamp
- ✓ Photonic sintering
- ✓ Hot air dryer

Integration – current status

- Combination of print heads with high precision granit stone
- ✓ Several sintering methods possible
 - ✓ Hot air dryer to remove solvents (LEL)
 - NIR / IR / Photonic sintering for conductivity
- ✓ Droplet analysis
- ✓ Possibility to combine inkjet with NIL

Integration – machine layout

Technologies & processes

Integration – machine layout

Summary

- Inkjet provides a step towards a more flexible and customizable production
- ✓ Inkjet is successfully integrated in a R2R process on 300 mm width
- ✓ Width is scalable
- ✓ Speeds up to 10 m/min were tested
- ✓ Different curing / drying systems were tested
- ✓ A layout for a inkjet dedicated machine is available

Nanoimprint technology

Nanoimprint technology

Introduction – comparison of printing processes

Nanoimprint lithography

UV-NIL system designs:

✓ Surface activation

Corona, plasma, chemical treatment
Coating (Slot die, knife, roller coater,...)
UV curing (Mercury, LED UV radiator)

NIL system designs:

✓ Heating

- ✓ IR / NIR, inductive, laser heating or heated fluids in embossing drum
- ✓ Replication mold
- ✓ Drum, endless belt, film
- One- / multi-temperature zones

Nanoimprint lithography

Process parameters (selection):

- ✓ Resist
 - ✓ Chem. formulation
 - Viscosity / Rheology
- 🗸 Film
 - Chem. formulation
 - Chemical / mechanical pre-treatment
- 🗸 Tool
 - Hard / soft mold
 - ✓ Anti-adhesion layer
- ✓ UV-source
 - ✓ Spectral distribution
 - LED- / conventional source
- ✓ Production system
 - ✓ Web (tension) control
 - Process specific sub-assemblies

Nanoimprint lithography

Coating and printing for NIL – Nanoimprint lithography

Slot die coating for pre-metered film coating

- ✓ Layer control
- ✓ Level control in the nip
- ✓ 12/9″ position
- Intermittent ink control

Coating and printing for NIL – Nanoimprint lithography

Nip coating

Layer control by gap
Level control in the nip
Compact process

Coating and printing for NIL – Nanoimprint lithography

Homogeneous structure

Inhomogeneous structure

Applications

UV / NIL – machines for lab 2 fab – R2R

UV / NIL – machines for lab 2 fab – R2R

Nanoimprinting combi system

UV / NIL – lab 2 fab – R2R & R2P

Temicoat Test Solution S2S

Summary

Bridging the gap

Needed for success:

- Reproducible results in every step of scale?
- Reality check if the approach is really scalable?
- ✓ Is the approach an approach for the real life production environment or is it rocket science?
- Are economies of scale reachable and when?
- ✓ Is durability really needed?
- ✓ Standardization of device manufacturing is the key for the industry
- ✓ Maybe small is the new big?

Summary

Bridging the gap

Do not hesitate to contact us!

Anything missing?

Let us know and we will make it happen!

Our R&D centre is worldwide the most versatile centre for coating, printing and laminating.

Sales department: sales@coatema.de

Roseller Straße 4 | D-41539 Dormagen Phone +49 (0) 21 33 97 84 - 0 | info@coatema.de

