

Coatema Dryer

- 8

Group of companies

Represented worldwide

Our markets

Printing systems

Our work in associations – global networking

PrintoCent

Board Member: OE-A

Advisory Board: Fraunhofer ITA

18.08.20

17.08.20

R&D customers ARISTOTLE **TECHNISCHE** UNSW THE UNIVERSITY Agency for Queen Marv UNIVERSITÄT UNIVERSITY Science, Technology OF ARIZONA. DRESDEN University of Londor OF THESSALONIKI and Research Karlsruhe Institute of Technology RUHR TECHNICAL UNIVERSITY OF LIBEREC Institut für Textiltechnik und UNIVERSITÄT Lehrstuhl für www.tul.cz Taiwan Textile BOCHUM Textilmaschinenbau Reasarch Institute hochschule **Fachhochschule Kiel** Deutsches Textilforschungszentrum Nord-West 62 CEM Forschungsinstitut German Textile Research Centre North-West hof Hochschule für Anaewandte Wissenschaften und Kunststoffbahnen University of Applied Sciences Centre for Nanotechnology and Smart Materials HERIOT UNIVERSITY OF **JOANNEUM** GeorgiaInstitute WATT Neue Materialien RESEARCH CAMBRIDGE Hochschule Niederrhein Tech Fürth University of Applied Sciences ÜLICH innovation for life MIONAL UNIVERSIT Centre Tecnològic de Catalunya of MONGOLIA FORSCHUNGSZENTRUM DEUTSCHE INSTITUTE FÜR TEXTIL + FASERFORSCHUNG Hochschule Reutlingen Fraunhofer Fraunhofer KITECH Holst Centre Reutlingen University open innovation by imec & TNO -IMM LBF Fraunhofer Fraunhofer Fraunhofer Fraunhofer 📓 Fraunhofer Fraunhofer IAP IAF ILT IFAM ISC FEP Fraunhofer **Fraunhofer** 💹 Fraunhofer Fraunhofer Fraunhofer 💹 Fraunhofer IVV PYCO IWM ISE IPT ICT

R&D projects overview 2020

E-Nanoprint Pro

Drying, curing & crosslinking

Coating paramete	ers		
Coating chemistry	Coating processes	Process control	Drying
 Rheology Viscosity Viscoelasticity Type of solvents Amount of solids Van der Waals force Sheer ratio Adhesion/Cohesion 	 Coating systems Single or multilayer coatings Direct coatings Transfer (indirect) coatings Substrate speed Layer thickness Coating accuracy 	 Process layout Tension control system Material guiding system Inline parameter control Quality control 	 Convection drying Contact drying Infrared drying Sintering NIR High frequency UV crosslinking systems
Substrate	Pretreatment	Environment	Finishing
 Surface tension Dimension stability Surface structure Contact angle 	CoronaPlasmaCleaning	✓ Humidity✓ Temperature✓ Inert conditions	CalendaringEmbossingSlitting

Classification of drying procedures

Drying					
Chemical drying	Physical drying				
	Mechanical drying	Thermal drying			
Reactions (oxidation of innitiators, cross linking reactions)	Centrifugal Pressing / squeezing	Convectional drying Contact drying Condensation drying Vacuum drying Flash drying			
		Molsieve Silicagel IR/NIR Radiation drying			

Information needed to properly select and size a drying system

Information about the substrate

- Web weight weight per unit area
- ✓ Web material
- ✓ Specific heat of web
- Temperature limitations
- Operating web tension tension sensitivity
- ✓ Special characteristics

Information needed to properly select and design drying system

Information about the environment

Details on the ambient conditions:

✓ Climatic conditions

(ambient temperature, air moisture, etc.)

- ✓ Local conditions (geodetic height, size of the work hall)
- ✓ National quide lines (EN 1539, NFPA, etc.)

Details on peripherical systems:

- ✓ Air treatment facilities
- Energy supply (gas, steam, electrical energy)
- Compressed air supply
- Energy recovery facilities

Dryer heating sources

🗸 Gas

✓ Thermal oil

🗸 Steam

✓ Electrical energy

Motivation – general tasks of drying

Relevant parameters:

- ✓ Solid heat capacity
- ✓ Solvent heat capacity
- ✓ Solvent evaporation energy
- ✓ Solvent evaporation speed
- → Seems to be trivial, but dryer technologies differ exactly in handling these tasks

Substrate Coating Heat transfer Vapor removal Evaporating solvent

Solvent

Solvent	Molar mass (g/mol)	Boiling point (°C)	Vapor pressure at 20°C (mbar)	Vapor pressure at 50°C (mbar)	Evaporation energy (kJ/kg)	Heat capacity (kJ/kg*K)	Surface energy at 20°C (mN/m=dyn/cm)
Water	18	100	23	123	2256	4.2	71.9
Methanol	32	65	129	535	1100	2.5	22.5
Ethanol	46	78	59	280	840	2.4	21.6
1-Proponol	60	97	20	112	750	2.8	23.0
2-Proponol	60	82	43	225	650	2.7	21.0
Acetone	58	56	246	830	525	2.2	22.8
MEK	72	80	105	373	447	2.2	24.6
NMP	99	203	0.3	2.9	511	2.1	40.9
Ethylacetate	88	77	98	380	362	1.9	23.0
Toluene	92	111	29	124	414	1.7	28.5

Heat capacity

Evaporation energy

Drying time

An isolating air layer forms just on top of the coating layer.

- This layer is hardly moving and thereby hinders the heat transfer as well as the solvent evaporation.
- ✓ It has to be broken by sufficient air flow without sacrificing the coating surface.

Usually there is a trade-off:

effective fast heat transfer or gentle mild slow drying

Drying time: heat transfer coefficient

- \checkmark The heat transfer coefficient α describes energy transfer from hot air to liquid
- ✓ Energy transfer \dot{Q} can be calculated in fair approximation from Reynolds number R_e , Prandtl numer P_R and Nusselt number N_U

$$\checkmark \propto = \frac{\dot{Q}}{A(TD - TO)}$$
 $R_e = \frac{wD}{v}$ $P_r = \frac{v}{a}$ $N_u = f(Re, Pr)$

An empirical function Nu = f (Re, Pr) is given in the literature for single slot nozzle and slot nozzle arrays

✓ From
$$N_u = \alpha \cdot \frac{D}{\lambda}$$
 then derive α and \dot{Q}

Drying time

- ✓ Drying time depends on the solvent evaporation rate at demanded temperature (sufficient energy transfer to achieve this temperature may be presupposed).
- ✓ A decisive factor for evaporation rate is vapor pressure. If drying is allowed near the solvent boiling temperature, there is no difference in vapor pressure for all solvents.
- ✓ But if by other reasons the drying temperature is limited, there are huge differences in vapor pressure.
- ✓ So the issue is to find the vapor pressure and evaporation rate for the given solvent at demanded temperature.

Vapor pressure

Vapor pressure can be calculated for any solvent at any temperature, if 2 pairs of pressure and temperature are known:

Clausius-Clapeyron: log $p = K_1 + \frac{K_2}{T}$

- ✓ Such pairs of p and T are available in the literature for any solvent e.g. p (20°C) and T (1013 hPa).
- ✓ Online excel-sheets are available to calculated the vapor pressure for any solvent at any temperature from two pairs (p/T).

Drying time, calculation of evaporation rate

- ✓ Vapor pressure is one factor of evaporation rate, but not the only one.
- Other than for vapor pressure there is no simple way to calculate the evaporation rate for any solvent at the demanded temperature.
- ✓ Based on a modified Hertz-Knudsen approach, the evaporation rate of any solvent at any temperature can be estimated (Coatema IP).

$$\checkmark Z \sim (P_s - Pp) \cdot \sqrt{\frac{M_r}{T}}$$

But still there are other influencing factors unknown (like the matrix of solids).
 Such factors have to be determined experimentally.

Calculation example

This is a practical example of a real calculation of dryer length for a 900 μ m wet coating based on solvent xylene at drying temperature 120°C.

Sufficient energy transfer is supposed.

The result was verified by trial.

Coating data:				
Coating thickness wet	900 µm			
Solvent xylene	65%			
Pure solvent thickness wet	585 µm			
Specific weight xylene	0.88 g/cm³			
Solvent grammage	514.8 g/m²			
Web speed	0.13 m/min			
Coating data:Coating thickness wet900 μmSolvent xylene65%Pure solvent thickness wet585 μmSpecific weight xylene0.88 g/cm³Solvent grammage514.8 g/m²Web speed0.13 m/minEvaporation data:Vapor pressure xylene at 20°C880 PaBoiling temperature xylene140°CVapor pressure at 120°C56180 PaRelative molar mass xylene106.17Evaporation rate (according to Coatema method)1.64 g/m²sResult (from web speed, grammage, evaporation rate):0.68 m				
Vapor pressure xylene at 20°C	880 Pa			
Boiling temperature xylene	140°C			
Vapor pressure at 120°C	56180 Pa			
Relative molar mass xylene	106.17			
Evaporation rate (according to Coatema method)	1.64 g/m²s			
Result (from web speed, grammage, evaporation rate):				
Dryer length	0.68 m			

Diffusion limit and skinning

- Drying is limited by diffusion (at least in the final state of low residual solvent content).
- ✓ If the internal diffusion is slower than the evaporation from the surface, then a skin may be created.
- The skin acts as a barrier. The remaining diffusion through the skin may be slower than the wet diffusion by many orders of magnitude.

So the initial evaporation must be reduced by low temperature and/or by partially saturated atmosphere. Despite reduced evaporation the total drying time then may be shorter than at full initial evaporation.

Dryer design

- ✓ Downweb temperature profiles can be realized by partitioning the dryer in different zones with different drying parameters.
- But temperature uniformity is difficult.
 Possible cause: Mixing of hot and cool air at unintended leakages by Venturi effect.
- Experience shows, that there is always a compromise:
 Good temperature uniformity requires low homogeneous air flow. High air flow results in less temperature uniformity.

Dryer design: surface deterioration

 Air flow removing the evaporating solvent may be laminar or turbulent.

Fluctuations of the flow may deteriorate the surface of a low viscous liquid causing wavy or stochastic structures.

For rough estimation it may be assumed, that 10% fluctuations of the dynamic (impact) pressure of the air flow compensate the hydrostatic pressure difference caused by surface structures of the low viscous liquid:

$$10\rho_{liquid} \cdot g \cdot h = 1/2 \cdot \rho_{air} \cdot v_{max}^2 \qquad v_{max} = \sqrt{20\left(\frac{\rho_{liquid}}{\rho_{air}}\right)} g \cdot h$$

→ Result: orange skin of 1 µm deterioration depth would be created by an air flow of 0.5 m/sec with superimposed fluctuations of 10%. Nonuniform air flow with 10% fluctuations

Coating with orange skin surface (exaggerated)

Dynamic effects being influenced by viscosity are not calculated. So the estimation holds for very low viscous liquids only.

Dryer design

Practical example: measured air speed in different dryers

Dryer	Setting	v _{air} at slot exit [m/s]	v _{air} at web surface [m/s]	Remarks
SC 12 30 cm wide mini hot air dryer with slots from above	100%	4.7	0.8	7 slots 260 x 7 mm² Slot length = web width Only from top values measure at first slot
CC 08 50 cm wide hot air dryer with slots from above and below	100%	4.6	1.6	48 slots 83 x 5 mm² 24 from top 24 from bottom
SM 21 50 cm wide hot air floating dryer with 180°-shifted air cusion nozzles from above and below	100%	25		8 nozzles from top 8 nozzles from bottom 3 slots for each nozzle Center 800 x 7 mm² Sides 800 x 4 mm²

From the 100% setting the air speed can be reduced to any intended value by changing the ventilator settings and/or reducing the slot width. Surface deterioration thus can be avoided.

Dryer design: hot air

- Heating and vapor transport combined
- Bulk heating by thermal conductivity from surface
- ✓ Isolating layer to be overcome by air flow
- ✓ High air flow deteriorates surface
- ✓ Temperature easy to limit
- 🗸 Slow

Dryer design: near-infrared (NIR)

- Heating and vapor transport separated
- ✓ Selective bulk heating by absorption
- \checkmark Absorption dependent on λ
- \checkmark Overheating and uniformity to be controlled
- ✓ Fast, if applicable
- ✓ Wavelength range 780 nm 3 µm

Dryer design

Wing shaped slot dryer

Wing shaped nozzle dryer with different nozzles

Simple slot dryer

Combined functions of heating and vapor transport
 Bulk heating by heat transfer from the surface
 Overheating easily avoided by limited air temperature

Dryer design

Slot dryers with adjustable slots easy to clean

Drying topics – drying technologies

Hot air technology

Hot air technology

Nozzle dryers modul Dry with shifted nozzles and wing shaped blow boxes

Operation modes for drying systems

1. "IN - OUT" mode -> Operation where the drying air / gas will not be recirculated

- ✓ Small machines and R&D lines
- ✓ or high requirements to the drying air / gas (e.g. purity)
- 2. **Recirculating mode** -> Operation where the drying air / gas will be recirculated and only a necessary part of drying fluid will be purged
 - ✓ The ratio of exhaust / circulated volume shall be < 0.5
 - Coating / converting machines
 - ✓ Paper machines etc.
- 3. **"OVER PRESSURE" mode** -> Operation where the drying air / gas will be recirculated and a surplus fresh air / gas occur
 - ✓ Inert drying systems (at the inlet and outlet area of the drying system)

DRYTEC

Drying topics – drying technologies: HighDry HD500

Drying topics – drying technologies: HighDry HD500

Air flow air inlet (cold) Air flow heated air (hot) Air flow reverse Clear arrows

Click "Air distribution" to show air flow direction

Hot air technology

Impingement nozzles with two jets

Flotation nozzles with adjustable air direction

Flotation nozzles

Impingement nozzles with one jet

Flotation nozzles with Contec 3 roller nozzle

*) Contec 3 – Nozzles are placed directly above each other. The top nozzles have to be directly above the rollers which are placed in nozzles.

Hot air technology

Flotation nozzles with contec 1 roller nozzle

Flotation nozzles with contec 2 roller nozzle

Flotation nozzles with contec 3 roller nozzle

Dryer operation

Coatema® Coating Machinery GmbH

Web behaviour in a floatation dryer

Click on the picture to show the video

DRYTEC

Heat exchanger – HIGHDRY 250 and thermal oil circulation system

Contact roller dryer

Flotation dryer

Dryer design – hydraulic lifting device

Dryer open with safety system

Dryer design – double glass windows

Dryer design with transport system – metal grid

DRYTEC

Dryer design with transport system – transport belt

Typical position of the dryer in the second level of a coating line

DRYTEC

RECO drying equipment

Opening with parallel lifting
 Thermal oil heat exchanger
 Flexible design of nozzles

- I_0 Intensity in
- I_1 Intensity out
- a Absorption coefficient
- x Layer thickness

IR technology – combined hot air / IR dryer

Dryer design: microwave technology

- ✓ Same pros and cons as IR, but even exaggerated
- Penetration depth approximately 2 cm, low absorption in thin layers (low absorption coefficient), resonator required for multiple passage
- ✓ Complex system
- ✓ Advantages for very thick layers only (e.g. foam blocks)

Comparison

Short wave NIR can be of great advantage, but only if applicable.

Applicability depends on coating liquid and substrate.

(The table focusses on applicable cases)

	Hot air dryer	Heated drum- based dryer	Infrared dryer	NIR drying technology	UV/EB curing
Drying time of physical drying	> 1.0-20.0 s	Depending on substrate thickness ~> 1.0 s	0.3–10.0 s	0.02-1.5 s	Not applied
Curing time of cross-linking section	5.0–30.0 s	3.0-15.0 s	1.0–10.0 s	0.1–2.0 s	0.1-2.0 s
Dynamic capability	Preheating and standby operation while web stop required	Preheating and standby operation while web stop required	Mostly no preheating required	Fully instantaneous start/stop capability	Depending on system, extreme dynamic, often preheating required
Max. possible production speed	Mostly only up to 600 m/min (1969 fpm)	Mostly <100 m/min (328 fpm)	Max. up to <1000 m/min (3281 fpm)	At present no limit up to >2000 m/min (6562 fpm)	Mostly only up to 600 m/min (1969 fpm)
Risk regarding thermal damage	High, depending on air temperature especially at fast web stop	High, depending on drum temperature	Lower, but given depending on heat due to mass of dryer design	Low, due to working principle and dryer design	Low, due to working principle
Applied for thermal sensitive substrates	Limited to low air temperature (<80 'C/ 176 'F) results in strong reduced drying performance	Limited to low drum temperature (<80 °C/ 176 °F) results in strong reduced drying performance	Limited to low drying power due to resulting thermal stress	Possible up to high production speed due to working principle and dryer design	Possible up to high production speed due to working principle an dryer design
Risk regarding penetration of the coating materials in open substrates	Cannot be avoided due to long drying time required	Cannot be avoided due to long drying time required	Can be reduced slightly, but not completely avoided	Can be avoided, due to extreme short drying time and high energy density	Can be avoided, due to extreme short drying time and high energy density
Consumption of consumable material	High, especially due to penetration in the substrate	High, especially due to penetration in the substrate	Lower, because of low penetration	Lower, because of mostly avoided penetration in the substrate	Lower, because of mostly avoided penetration in the substrate

Do not hesitate to contact us!

Anything missing?

Let us know and we will make it happen!

Our R&D centre is worldwide the most versatile centre for coating, printing and laminating.

Sales department: sales@coatema.de

Roseller Straße 4 | D-41539 Dormagen Phone +49 (0) 21 33 97 84 - 0 | info@coatema.de

