Laufende Projekte

 

01/2017 – 12/2019 – InTres

intres efre nrw efre eu

Innovative Trägermaterialien zur Optimierung der Stromableiter von elektrischen Speichern

Die dezentrale Energiespeicherung aus erneuerbaren Energien bis hin zur Elektromobilität bauen auf die kontinuierliche Weiterentwicklung von elektrischen Speichern. Die zentrale Forschungsfrage liegt dabei insbesondere in der Effizienz der Speicherung von Energie: Einerseits müssen Kosten gesenkt und andererseits Lebensdauer und Performance von Batterien verbessert werden. Bisher lag der Fokus der Batterieforschung auf der Zellchemie. Jedoch haben insbesondere die stromleitfähigen Trägermaterialien einen entscheidenden Einfluss auf die Performance und Kosten von Lithium-Ionen Batterien.

Daher soll im vorliegenden Verbundprojekt die Performance von elektrischen Speichern auf Basis der Lithium-Ionen-Technologie durch einen ressourcenschonenden Einsatz von innovativen Trägermaterialien gesteigert werden. Ziel ist es, aktuelle Stromableiter (Al- und Cu-Folien) der Batteriezelle durch den Einsatz von dreidimensionalen Trägermaterialien (Streckmetalle, Metallschäume, Metallgewebe, etc.) zu ersetzen und deren Potential zu validieren.

Das Konsortium aus Forschung und Industrie bildete dabei die gesamte Wertschöpfungskette der Batterieproduktion ab und verfügt über ein breites Know-How sowie eine sehr gute Infrastruktur. Das Vorhaben wird aus den Mitteln des Europäischen Fonds für regionale Entwicklung (EFRE) gefördert.

 

 

06/2017 – 5/2020 – Flex-G

flex-g BMWT

Erforschung von Rolle-zu-Rolle Technologien zur Herstellung flexibler und gebogener Fassaden- und Dachelemente mit schaltbarem Gesamtenergiedurchlassgrad.

Ziel des Projektes FLEX-G ist die Erforschung von Technologien zur Herstellung von transluzenten und transparenten Dach-und Fassadenelementen mit integrieren optoelektronischen Bauelementen. Im Fokus steht dabei ein schaltbarer Gesamtenergiedurchlassgrad (g-Wert). Dieser wird durch elektrochrome Bauelemente erreicht, die mittels Rolle-zu-Rolle Beschichtungsverfahren direkt auf einer flexiblen ETFE-Folie aufgebaut werden. ETFE ist ein häufig in Membrandächern von Stadien, Flughäfen oder Bahnhöfen eingesetztes Material. Ein zweites Projektziel ist die Erforschung von Technologien zur direkten Integration großflächiger flexibler Solarzellen auf Basis der organischen Photovoltaik in ETFE Membranen sowie die Anpassung dieser an spezifischen Anforderungen im Membranbau. Das Vorhaben FLEX-G leistet damit sowohl im Bereich Energieeinsparung als auch im Bereich Energieerzeugung in Gebäuden einen maßgeblichen Beitrag zu dem Ziel der Bundesregierung, bis 2050 den Primärenergiebedarf in Deutschland um 50 % zu senken.

 

 

04/2017 – 03/2020 – SolGel-PV

solgel BMBF

Multifunktionale Sol-Gel-Schichten für die Photovoltaik Industrie.

In SOLGEL-PV werden nanoskalige Sol-Gel Schichten für den Einsatz auf Solarzellenebene erzeugt, aufgebracht und strukturiert. Diese sollen auf innovative Weise (i) als Antireflexstruktur, die Mie-Resonanzen zur besseren Lichteinkopplung ausnutzt, eingesetzt werden (ii) im Rückseitenkontakt zu einer verbesserten Optik und Haftung führen und (iii) als leitende und klebende Verbindungsschicht für eine kostengünstige Realisierung von Tandemsolarzellen dienen. Die Schichten werden mittels In-Line fähigen Prozessen aufgebracht. Die Nanostrukturierung erfolgt mit einer Roll-to-Plate-Technologie.

Die Arbeiten umfassen Entwicklungen, die sowohl materialwissenschaftlicher wie auch prozesstechnischer Natur sind. Dabei werden Sol-Gele maßgeschneidert für die verschiedenen Musteranwendungen synthetisiert. Darüber hinaus sollen Abscheide- und Prägeprozesse auch für eine großtechnische Anwendung realisiert werden.

Folgende Zielvorgaben sind für die drei definierten Musteranwendungen vorgesehen: Durch die in Sol-Gel geprägten Mie-Resonatoren sollen bessere Eigenschaften im Vergleich zu einer Isotextur erreicht werden. Die Sol-Gel Zwischenschicht am Rückseitenkontakt soll durch eine Verringerung der parasitären Absorption die Kurzschlussstromdichte um mind. 0,5 mA/cm² im Vergleich zu einem Al/Si Kontakt erhöhen. Gleichzeitig soll die Haftung ausreichend hoch für eine folgende Modulverschaltung sein. Mit der Verbindungsschicht für Tandemsolarzellen sollen ein III-V Wafer und ein Si-Wafer dauerhaft miteinander verbunden werden, bei gleichzeitig hoher Transparenz (>98 %) und geringem Spannungsverlust ( Die entwickelten, innovativen kostengünstigen Technologien sowie der damit erzielte höhere Energieertrag werden die Kosteneffizienz der Photovoltaik weiter verbessern und den beteiligten Firmen ein Alleinstellungsmerkmal und somit einen Wettbewerbsvorteil sichern.

 

 

12/2016 – 11/2019 – PowderSizing

powdersizing BMWT

Prozess- und materialeffiziente Herstellung von Thermoplast-Glas-Bikomponentenfasern zur Herstellung von endlosfaserverstärkten thermoplastischen Bauteilen.

Die mechanischen Eigenschaften der thermoplastischen Verbünde sind abhängig vom Faservolumengehalt, der Benetzung der Glasfasern, sowie der Verteilung der Glasfasern und somit der Festigkeitsverteilung. Die theoretische Leistungsgrenze wird mit bereits erhätlichen Produkten aus Hybridgarnen oder dem Filmstacking nur bedingt erreicht. Zudem ist die Beschichtungsgeschwindigkeit mit 100 m/min begrenzt und damit die Wirtschaftlichkeit gering. Daher sind neue Technologien notwendig, um die theoretische Leistungsgrenze auch praktisch in industriellen Prozessen zu erreichen. Dadurch wäre auch eine Anwendung der Verbünde im Flug-zeugbau denkbar. Derzeit finden diese Halbzeuge im Automobilsektor Anwendung. Auch hier wäre bei gleicher Festigkeit eine Gewichtsreduktion möglich. Das Ziel dieses Forschungsvorhabens stellt die Entwicklung eines Moduls zur Beschichtung bei bis zu 2.000 m/min dar. Dadurch werden alle Filamente im Verbund gleichmäßig beschichtet und die Wirtschaftlichkeit erhöht.

 

 

07/2017 – 06/2019 – iCoat

icoat interreg

Entwicklung und Validierung von neuartigen Breitschlitzdüsenkonzepten für nieder-viskose Tinten.

Im iCoat Projekt werden neuartige Breitschlitzdüsen zur intermittierenden Beschichtung von nieder-viskosen Tinten entwickelt. Die Düsen werden in der „Advaned Multi coAting LInE“ (AMALIE) Anlage am Holst Centre integriert und dort auf Bauelementniveau anhand von Perowskit-Solarzellen qualifiziert. Hierbei wird eine ultraschnelle Piezosteuerung zum Schalten der Breitschlitzdüsen eingesetzt. Die intermittierende Beschichtung erlaubt einen geringeren Materialverbrauch, eine höhere Ausbeute und ermöglicht somit reduzierte Produktionskosten. Die Software-seitige Integration in diesem Projekt wird durch Verautomation durchgeführt.

http://rocket-innovations.eu/laufende-innovationsprojekte/i07-icoat/

 

 

01/2018 – 12/2020 – Supersmart

supersmart supersmart_eu

Hochskalieren von Ausgangsmaterialien für kostengünstigere gedruckte Elektronik.

In Alltagsprodukten wie Etiketten und Verpackungen steigt der Bedarf an smarten Produkten immer weiter an. Dadurch können Alltagsprodukte Teil des digitalen Ökosystems werden. Eine der größten Herausforderungen ist die Umweltverträglichkeit von eingebetteten Sensoren und deren Kommunikationstechnik. Einer der Lösungsansätze ist die Verwendung von organischen Materialien anstelle von seltenen und giftigen anorganischen Stoffen, sofern dies möglich ist. Dies ist das Ziel vom Projekt SUPERSMART, welches das direkte Drucken von Sensoren, Displays und Elektronik auf Papier anstatt der Nutzung von konventioneller Elektronik ermöglichen soll. SUPERSMART sorgt somit für eine einfache Wiederverwertung solcher smarten Produkte. Geführt wird SUPERMSART von Arkema, einer weltweiten Chemiefirma, zusammen mit Arjowiggins, einem Hersteller technischer Papiere für gedruckte Elektronik, sowie führenden technischen Organisationen (CEA, Frauenhofer Insitute, Joanneum Research), renommierten Universitäten (University de Bordeaux und Lissabon) sowie innovativen KMUs (Coatema, Luquet & Duranton). Somit zielt das SUPERSMART Projekt auf das Hochskalieren von smarten Materialien für smarte und recyclebar Zukunftsprodukte ab.

https://www.supersmart-project.eu/

 

 

01/2018 – 12/2021 – Greensense

greensense greensense_eu

Nachhaltige, kabellose, autonome, auf Nanocellulose basierte Biosensor Plattform zur quantitativen Messung von Drogenmissbrauch

Gedruckte Elektronik ist eine der am stärksten wachsenden Technologien in der Welt. Papier und Plastik sind zwei flexible Materialien, welche als Schlüsselsubstrate in der Entwicklung der Zukunftsgeräte flexibler Elektronik gelten. Im Gegensatz zu den konventionellen Plastiksubstraten haben papierbasierte Substrate basierend auf Cellulose verschiedene Vorteile, wie geringere Kosten und Wiederverwertbarkeit. Somit haben papierbasierte Substrate einen signifikanten Effekt in der Reduzierung der Umweltbelastung durch „elektronischen Müll“. Darüber hinaus bieten Sie der Papier- und Zellstoffindustrie neue Möglichkeiten und Chancen. Die Oberflächeneigenschaften von konventionellen Papier sind allerdings nicht für gedruckte Elektronik geeignet und daher werden Papiersubstrate üblicherweise mit öl-basierten Polymeren behandelt. Aufgrund dessen ist aus dem Gesichtspunkt der Nachhaltigkeit ein großes Interesse an alternativen erneuerbaren Filmen und Beschichtungen aus Biopolymeren entstanden. Neben weiteren Alternativen stellen dabei Filme basierend auf Nanocellulose (NC) ein großes Potential dar, da sie eine hohe Stärke, ein hohes Seitenverhältnis, Transparenz und eine geringe Porosität in Verbindung mit einer glatten Oberfläche aufweist.

Im Projekt GREENSENSE werden die Bereiche gesundheitliche Diagnostik und gedruckte Elektronik in einer komplett-integrierten Biosensor Plattform zusammengebracht, welche auf Nanocellulose basiert. Diese Biosensor Plattform weist einen neu entwickelten, gedruckten Drogen-Biosensor auf und hat darüber hinaus verschiedene auf Nanocellulose basierende, gedruckte elektronische Komponenten integriert (Superkondensator und/oder Batterie als gedruckter Energiespeicher, Display und NFC Antenne). Des Weiteren wird ein einzelner Mikrochip integriert um eine autarke Energieversorgung sowie eine kabellose Kommunikation für ein einfaches Auslesen der Ergebnisse durch den Endanwender zu ermöglichen. Um die verschiedenen, funktionellen Tinten auf das auf Nanocellulose basierte Substrat aufzubringen werden verschiedene Druckmethoden mit hohem Durchsatz verwendet, wie z.B. Sheet-to-Sheet (S2S) Siebdruck und/oder Inkjet Druck. Die finale auf Nanocellulose basierte Biosensor Plattform wird einfach zu bedienen, flexibel, massenproduzierbar, kosteneffizient, umweltfreundlich entsorgbar und recycelbar sein und hat zusätzlich einen geringen Stromverbrauch.

https://www.greensense-project.eu/

 

 

10/2017 – 09/2020 – SOLID

solid BMWT

Innovative Festkörperbatterien auf Basis von Sol-Gel Materialien mit Li-Metallanode und implementierter 3D-Strukturierung.

Einen wesentlichen Baustein für die Zukunft der Elektromobilität werden inhärent sichere und leistungsfähige Batterietechnologien darstellen. Festkörperansätze besitzen das Potenzial, diese Anforderungen zu erfüllen. Bislang verwendete Prozesse und Verfahren lassen sich jedoch oftmals nicht oder nicht wirtschaftlich skalieren und mit hohen Energiedichten darstellen.

Das Ziel des Vorhabens SOLID liegt in der Erforschung einer Festkörperbatterie auf Basis kostengünstiger Herstellungsverfahren, welche durchgehend auf industrielle Maßstäbe skalierbar sind oder von bereits etablierten Verfahren auf die Batterietechnologie übertragen werden. Der Festkörperansatz bietet die Möglichkeit, neue Zellkonzepte zu realisieren und hierdurch den Anteil elektrochemisch inaktiver Komponenten oder Verschaltungsaufwand zu minimieren. Ausgehend von einer Materialforschung für Kathoden- und Elektrolytschichten durch das Fraunhofer ISC und einer Anodenentwicklung durch Applied Materials können Festkörperbatterien im Einzellagenformat aufgebaut werden. Begleitend dazu strebt das Fraunhofer ISE durch eine Strukturierung der Stromableiter- bzw. Kathodenschichten an, hohe intrinsische Widerstände zu verringern. Parallel dazu erforscht LUNOVU durch neuartige Laser-basierte Verfahren das Kristallisationsverhalten der Kathoden- und Elektrolytschichten. All diese Verfahren werden durch Coatema auf kontinuierliche Prozesse direkt übertragen oder die Implementierbarkeit in einen kontinuierlichen Prozess dargestellt. Federführend durch das gesamte Projekt wird seitens des Projektkoordinators Varta ein Zellkonzept in Kooperation mit allen Partnern entwickelt und abschließend die Funktionstüchtigkeit dieses Festkörperbatteriekonzepts anhand eines Demonstrators nachgewiesen.

Der Batteriemarkt wird stark von asiatischen Herstellern dominiert. Um in diesem Markt zu partizipieren oder gar eine Technologieführerschaft zu erlangen ist bereits heute eine grundlegende Forschung an dieser Zukunftstechnologie notwendig. Da in diesem Forschungsvorhaben auf in Deutschland etablierte Technologien zurückgegriffen wird, in denen kleine und mittelständische deutsche Unternehmen teilweise führend sind, stützt das Vorhaben bei Projekterfolg zudem mittelfristig Arbeitsplätze entlang der Wertschöpfungskette.

 

 

01/2016 – 12/2018 – Pi-Scale

pi-scale photonis21

Pi-Scale entwickelt eine europäische Pilotlinie für die Produktion von flexiblen OLEDs.

Im Projekt Pi-Scale werden bestehende Infrastrukturen in Europa genutzt um eine “Europäische flexible OLED Pilotlinie” zu erschaffen, welche in einem Open Access-Modus betrieben wird. Kunden können dann entlang der Wertschöpfungskette im individuellen Produktdesign betreut werden. Zusätzlich können Validierungen von hochskalierbaren Konzepten auf Systemebene eine flexible OLED-Integration stattfinden. So ermöglicht Pi-Scale die notwendige Überwindung zwischen den bereits heute existierenden Ergebnissen in der Herstellung von hocheffizienten flexiblen OLED-Modulen im Labormaßstab hin zur Massenfertigung.

http://pi-scale.eu/

 

 

05/2016 – 03/2019 – HEA2D

hea2d efre nrw efre eu

Herstellung, Eigenschaften und Anwendung von 2D Nanomaterialien.

Eingebunden in massentaugliche Fertigungsverfahren haben 2D Materialien das Potential, integrierte und systematische Produkt- und Produktionslösungen zu schaffen, die sozial, ökonomisch und ökologisch nachhaltig sind. So lassen sich der Klimawandel, eine umweltverträgliche und bezahlbare Energieversorgung und Mobilität sowie eine wachsende Ressourcenverknappung mit Hilfe von 2D-Materialien adressieren, und neue, innovative Lösungen erarbeiten. Während mit wachsender Dynamik für immer mehr Anwendungen im Labormaßstab das Potential dieser neuen Materialklasse nachgewiesen wird, scheitert eine Umsetzung in Produkte an der fragmentierten Fertigungskette der mittels 2D-Materialien funktionalisierten Produkte – die Materialinnovation der 2D-Materialien führt bislang aus diesem Grund noch zu keinen wichtigen Produktinnovationen.

Im Rahmen des Verbundvorhabens HEA2D wird eine durchgängige Verarbeitungskette, bestehend aus verschiedenen Abscheideverfahren für 2D-Materialien, Verfahren für den Transfer von Kunststofffolien sowie der massentauglichen Integration in Kunststoffkomponenten erforscht. Die Ergebnisse des Projektes werden über bestehende Kooperationen der Verbundpartner interessierten Nordrhein-Westfälischen Unternehmen nahegebracht mit dem Ziel, bereits in einem frühen Entwicklungsstadium Anregungen von Endanwendern in die Fertigungskette zu integrierten. Hierfür wird die Plattform der Fachgruppe „Graphen und 2D-Materialien“ sowie das Cluster „Kunststoffland NRW“ in Nordrhein-Westfalen genutzt.

 

 

06/2016 – 06/2019 – Photon Flex

photonflex efre nrw efre eu

Photonische Prozesskette zur Fertigung flexibler organischer Solarzellen im Rolle-zu-Rolle Verfahren

Ziel des Projektes PhotonFlex ist die Entwicklung und Untersuchung innovativer Technologien für die kostengünstige und hochproduktive Herstellung von flexiblen organischen Solarzellen. Dabei soll die Produktion flexibler Solarzellen, bei denen die Beschichtung mit aktiven Absorbern aus der Flüssigphase erfolgt, vom Labor in eine industrienahe Produktionskette überführt werden. Im Fokus des Projektes liegt die Nutzung laserbasierter Verfahren zur hochdichten Serien Verschaltung sowie hocheffizienter laserbasierte Trocknungsverfahren. Zudem werden neuartige Verkapselungslösungen auf der Basis des Kunststofflaserschweißens für Hochrateprozesse qualifiziert.

Hierbei integriert Coatema neue Baugruppen zur laserbasierten Verkapselung in eine vorhandene Anlage beim Partner ILT. Hierbei werden sowohl eine laserbasierte Durchstrahl- als auch eine Spaltschlitzschweiß-Methode realisiert. Mit den Partnern werden die neuen Methoden anhand von OPV-Bauelementdaten demonstriert und evaluiert.